Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus.

Identifieur interne : 000150 ( Main/Exploration ); précédent : 000149; suivant : 000151

Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus.

Auteurs : Qing Zhu [République populaire de Chine] ; Nan Li [République populaire de Chine] ; Cuiping Wang [République populaire de Chine] ; Qi Zhang [République populaire de Chine] ; Hongwen Sun [République populaire de Chine]

Source :

RBID : pubmed:31958649

Descripteurs français

English descriptors

Abstract

Humic acid plays an important role in controlling the toxicity of nanoparticles to organisms. However, little is known about the influence of different fractions of dissolved humic acid (DHA) from soil on the toxicity of nanoparticles to organisms. The concentration of γ-Fe2O3 and the exposure time affected the malondialdehyde (MDA) content, reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) activity in P. chrysosporium cells and were inversely proportional to the relative activities of the cells. P. chrysosporium was exposed to γ-Fe2O3 and DHA1 for 3 h, 6 h and 12 h. Catalase (CAT) and peroxidase (POD) activities were generally higher than control. Particularly, under the influence of 50 mg/L DHA1 and different concentrations of γ-Fe2O3 (10 and 50 mg/L), the CAT and POD activities were higher than those of cells exposed to γ-Fe2O3 alone. Conversely, both activities of P. chrysosporium exposed to DHA4 combined with γ-Fe2O3 for 12 h were lower than those of cells exposed to γ-Fe2O3 alone and gradually decreased with increasing DHA4 concentration (0, 10 and 50 mg/L). The μ-XAFS normalized spectrum indicated that Fe3+ entering the cells tended to transform into Fe2+ as the stress time prolonged. TEM analysis confirmed the toxicity of high concentrations of γ-Fe2O3 to P. chrysosporium. The comet assay showed that DHA4 in soil enhanced the toxicity of γ-Fe2O3 to P. chrysosporium more than DHA1 did. Namely, compared to DHA1, DHA4 made it easier for nano-Fe2O3 to enter P. chrysosporium cells, causing more toxicity of γ-Fe2O3 to P. chrysosporium.

DOI: 10.1016/j.chemosphere.2020.125895
PubMed: 31958649


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus.</title>
<author>
<name sortKey="Zhu, Qing" sort="Zhu, Qing" uniqKey="Zhu Q" first="Qing" last="Zhu">Qing Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Nan" sort="Li, Nan" uniqKey="Li N" first="Nan" last="Li">Nan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Cuiping" sort="Wang, Cuiping" uniqKey="Wang C" first="Cuiping" last="Wang">Cuiping Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China. Electronic address: wangcp@nankai.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Qi" sort="Zhang, Qi" uniqKey="Zhang Q" first="Qi" last="Zhang">Qi Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Hongwen" sort="Sun, Hongwen" uniqKey="Sun H" first="Hongwen" last="Sun">Hongwen Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31958649</idno>
<idno type="pmid">31958649</idno>
<idno type="doi">10.1016/j.chemosphere.2020.125895</idno>
<idno type="wicri:Area/Main/Corpus">000158</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000158</idno>
<idno type="wicri:Area/Main/Curation">000158</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000158</idno>
<idno type="wicri:Area/Main/Exploration">000158</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus.</title>
<author>
<name sortKey="Zhu, Qing" sort="Zhu, Qing" uniqKey="Zhu Q" first="Qing" last="Zhu">Qing Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Nan" sort="Li, Nan" uniqKey="Li N" first="Nan" last="Li">Nan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Cuiping" sort="Wang, Cuiping" uniqKey="Wang C" first="Cuiping" last="Wang">Cuiping Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China. Electronic address: wangcp@nankai.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Qi" sort="Zhang, Qi" uniqKey="Zhang Q" first="Qi" last="Zhang">Qi Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Hongwen" sort="Sun, Hongwen" uniqKey="Sun H" first="Hongwen" last="Sun">Hongwen Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071</wicri:regionArea>
<wicri:noRegion>300071</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemosphere</title>
<idno type="eISSN">1879-1298</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalase (MeSH)</term>
<term>Ferric Compounds (analysis)</term>
<term>Fungi (drug effects)</term>
<term>Humic Substances (analysis)</term>
<term>Iron (analysis)</term>
<term>Iron (toxicity)</term>
<term>Malondialdehyde (MeSH)</term>
<term>Nanoparticles (toxicity)</term>
<term>Soil (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Catalase (MeSH)</term>
<term>Champignons (effets des médicaments et des substances chimiques)</term>
<term>Composés du fer III (analyse)</term>
<term>Fer (analyse)</term>
<term>Fer (toxicité)</term>
<term>Malonaldéhyde (MeSH)</term>
<term>Nanoparticules (toxicité)</term>
<term>Sol (MeSH)</term>
<term>Substances humiques (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Ferric Compounds</term>
<term>Humic Substances</term>
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Catalase</term>
<term>Malondialdehyde</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Composés du fer III</term>
<term>Fer</term>
<term>Substances humiques</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Fer</term>
<term>Nanoparticules</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalase</term>
<term>Malonaldéhyde</term>
<term>Sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Humic acid plays an important role in controlling the toxicity of nanoparticles to organisms. However, little is known about the influence of different fractions of dissolved humic acid (DHA) from soil on the toxicity of nanoparticles to organisms. The concentration of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
and the exposure time affected the malondialdehyde (MDA) content, reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) activity in P. chrysosporium cells and were inversely proportional to the relative activities of the cells. P. chrysosporium was exposed to γ-Fe
<sub>2</sub>
O
<sub>3</sub>
and DHA
<sub>1</sub>
for 3 h, 6 h and 12 h. Catalase (CAT) and peroxidase (POD) activities were generally higher than control. Particularly, under the influence of 50 mg/L DHA
<sub>1</sub>
and different concentrations of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
(10 and 50 mg/L), the CAT and POD activities were higher than those of cells exposed to γ-Fe
<sub>2</sub>
O
<sub>3</sub>
alone. Conversely, both activities of P. chrysosporium exposed to DHA
<sub>4</sub>
combined with γ-Fe
<sub>2</sub>
O
<sub>3</sub>
for 12 h were lower than those of cells exposed to γ-Fe
<sub>2</sub>
O
<sub>3</sub>
alone and gradually decreased with increasing DHA
<sub>4</sub>
concentration (0, 10 and 50 mg/L). The μ-XAFS normalized spectrum indicated that Fe
<sup>3+</sup>
entering the cells tended to transform into Fe
<sup>2+</sup>
as the stress time prolonged. TEM analysis confirmed the toxicity of high concentrations of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
to P. chrysosporium. The comet assay showed that DHA
<sub>4</sub>
in soil enhanced the toxicity of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
to P. chrysosporium more than DHA
<sub>1</sub>
did. Namely, compared to DHA
<sub>1</sub>
, DHA
<sub>4</sub>
made it easier for nano-Fe
<sub>2</sub>
O
<sub>3</sub>
to enter P. chrysosporium cells, causing more toxicity of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
to P. chrysosporium.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31958649</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1298</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>247</Volume>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Chemosphere</Title>
<ISOAbbreviation>Chemosphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus.</ArticleTitle>
<Pagination>
<MedlinePgn>125895</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0045-6535(20)30087-4</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chemosphere.2020.125895</ELocationID>
<Abstract>
<AbstractText>Humic acid plays an important role in controlling the toxicity of nanoparticles to organisms. However, little is known about the influence of different fractions of dissolved humic acid (DHA) from soil on the toxicity of nanoparticles to organisms. The concentration of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
and the exposure time affected the malondialdehyde (MDA) content, reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) activity in P. chrysosporium cells and were inversely proportional to the relative activities of the cells. P. chrysosporium was exposed to γ-Fe
<sub>2</sub>
O
<sub>3</sub>
and DHA
<sub>1</sub>
for 3 h, 6 h and 12 h. Catalase (CAT) and peroxidase (POD) activities were generally higher than control. Particularly, under the influence of 50 mg/L DHA
<sub>1</sub>
and different concentrations of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
(10 and 50 mg/L), the CAT and POD activities were higher than those of cells exposed to γ-Fe
<sub>2</sub>
O
<sub>3</sub>
alone. Conversely, both activities of P. chrysosporium exposed to DHA
<sub>4</sub>
combined with γ-Fe
<sub>2</sub>
O
<sub>3</sub>
for 12 h were lower than those of cells exposed to γ-Fe
<sub>2</sub>
O
<sub>3</sub>
alone and gradually decreased with increasing DHA
<sub>4</sub>
concentration (0, 10 and 50 mg/L). The μ-XAFS normalized spectrum indicated that Fe
<sup>3+</sup>
entering the cells tended to transform into Fe
<sup>2+</sup>
as the stress time prolonged. TEM analysis confirmed the toxicity of high concentrations of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
to P. chrysosporium. The comet assay showed that DHA
<sub>4</sub>
in soil enhanced the toxicity of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
to P. chrysosporium more than DHA
<sub>1</sub>
did. Namely, compared to DHA
<sub>1</sub>
, DHA
<sub>4</sub>
made it easier for nano-Fe
<sub>2</sub>
O
<sub>3</sub>
to enter P. chrysosporium cells, causing more toxicity of γ-Fe
<sub>2</sub>
O
<sub>3</sub>
to P. chrysosporium.</AbstractText>
<CopyrightInformation>Copyright © 2020. Published by Elsevier Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Nan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Cuiping</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China. Electronic address: wangcp@nankai.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Hongwen</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chemosphere</MedlineTA>
<NlmUniqueID>0320657</NlmUniqueID>
<ISSNLinking>0045-6535</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006812">Humic Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4Y8F71G49Q</RegistryNumber>
<NameOfSubstance UI="D008315">Malondialdehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006812" MajorTopicYN="N">Humic Substances</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008315" MajorTopicYN="N">Malondialdehyde</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Comet assay</Keyword>
<Keyword MajorTopicYN="N">Different fractions of dissolved humic acid</Keyword>
<Keyword MajorTopicYN="N">Iron oxide nanomaterials</Keyword>
<Keyword MajorTopicYN="N">P. chrysosporium</Keyword>
<Keyword MajorTopicYN="N">TEM</Keyword>
<Keyword MajorTopicYN="N">μ-XAFS</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31958649</ArticleId>
<ArticleId IdType="pii">S0045-6535(20)30087-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.chemosphere.2020.125895</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhu, Qing" sort="Zhu, Qing" uniqKey="Zhu Q" first="Qing" last="Zhu">Qing Zhu</name>
</noRegion>
<name sortKey="Li, Nan" sort="Li, Nan" uniqKey="Li N" first="Nan" last="Li">Nan Li</name>
<name sortKey="Sun, Hongwen" sort="Sun, Hongwen" uniqKey="Sun H" first="Hongwen" last="Sun">Hongwen Sun</name>
<name sortKey="Wang, Cuiping" sort="Wang, Cuiping" uniqKey="Wang C" first="Cuiping" last="Wang">Cuiping Wang</name>
<name sortKey="Zhang, Qi" sort="Zhang, Qi" uniqKey="Zhang Q" first="Qi" last="Zhang">Qi Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31958649
   |texte=   Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31958649" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020